A View from the Shadows: Reading List

“Reality in the Shadows (or) What the Heck’s the Higgs” is meant to help a new audience come to discover a love of science and especially physics, or to welcome to the frontier those who already discovered that love a long time ago.

Reality in the Shadows” is a book that required years to write. I was the latest addition to the creative team, but it is very much a shared vision between three co-authors each with different perspectives on the subject matter. Jim Gates has a keen mathematical mind and delights in showing an audience that math is not as scary as they have been led to believe (or have wrongly convinced themselves). He sees the deeper connection between mathematics and reality. Frank Blitzer has a deep love of physics as a branch of science that seeks some of the deepest truths about the universe, and brings to bear on this a wealth of experience in computation, engineering, and modeling processes. I’m the experimental physicist and Higgs hunter, who believes that reliably gathered independent lines of evidence are the best way to support, or refute, an idea.

Despite our existing expertise, this book didn’t spring fully formed from the minds of the authors. It was a labor, and that labor benefited from learning. We, too, depended on those who had written things down before us. We drew from many sources to tell the story of the past, present, and possible futures of physics.

Below, find a reading list of material I used to support my writing contributions to the book. I hope some of these will allow you a much deeper and more technical exploration of some subjects in the book. Many are highly technical, but they provided the raw scientific material that I tried to communicate to a general audience.

Quantum Mechanics and Related Subjects

  • Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Annalen Der Physik, 322(10), 891–921. http://doi.org/10.1002/andp.19053221004

  • McCarthy, I. E., & Weigold, E. (1976). (e, 2e) spectroscopy. Physics Reports, 27(6), 275–371. http://doi.org/10.1016/0370-1573(76)90005-3

  • Lohmann, B., & Weigold, E. (1981). Direct measurement of the electron momentum probability distribution in atomic hydrogen. Physics Letters A, 86(3), 139–141. http://doi.org/10.1016/0375-9601(81)90851-3

  • McCarthy, I. E., Weigold, E., Amaldi U Jr, Campos Venuti G, Cortellessa G, de Sanctis E, Frullani S, L. R. and S. P., Amaldi U Jr, Egidi A, M. R. and P. G., Avaldi L, Camilloni R, F. E. and S. G., Avaldi L, Camilloni R, P. Y. V. and S. G., … L, W. J. (1988). Wavefunction mapping in collision experiments. Reports on Progress in Physics, 51(3), 299–392. http://doi.org/10.1088/0034-4885/51/3/001

  • J�nsson, C. (1961). Elektroneninterferenzen an mehreren k�nstlich hergestellten Feinspalten. Zeitschrift F�r Physik, 161(4), 454–474. http://doi.org/10.1007/BF01342460

  • Smeenk, C. T. L. (2013). Viewpoint A New Look at the Hydrogen Wave Function, 58, 1–3. http://doi.org/10.1103/Physics.6.58

  • Stodolna, A. S., Rouzée, A., Lépine, F., Cohen, S., Robicheaux, F., Gijsbertsen, A., … Vrakking, M. J. J. (2013). Hydrogen Atoms under Magnification: Direct Observation of the Nodal Structure of Stark States. Physical Review Letters, 110(21), 213001. http://doi.org/10.1103/PhysRevLett.110.213001

  • Molecules Imaged Most Intimately | Science | AAAS. (n.d.). Retrieved January 23, 2017, from http://www.sciencemag.org/news/2011/08/molecules-imaged-most-intimately

  • BaBar makes first direct measurement of time-reversal violation – physicsworld.com. (n.d.).

  • Lees, J. P., Poireau, V., Tisserand, V., Garra Tico, J., Grauges, E., Palano, A., … Wu, S. L. (2012). Observation of Time-Reversal Violation in the B 0 Meson System. Physical Review Letters, 109(21), 211801. http://doi.org/10.1103/PhysRevLett.109.211801

  • OCCHIALINI, G. P. S., & POWELL, C. F. (1947). Nuclear Disintegrations Produced by Slow Charged Particles of Small Mass. Nature, 159(4032), 186–190. http://doi.org/10.1038/159186a0

  • LATTES, C. M. G., OCCHIALINI, G. P. S., & POWELL, C. F. (1947). Observations on the Tracks of Slow Mesons in Photographic Emulsions. Nature, 160(4067), 486–492. http://doi.org/10.1038/160486a0

  • LATTES, C. M. G., OCCHIALINI, G. P. S., & POWELL, C. F. (1947). Observations on the Tracks of Slow Mesons in Photographic Emulsions. Nature, 160(4066), 453–456. http://doi.org/10.1038/160453a0

  • CHADWICK, J. (1932). Possible Existence of a Neutron. Nature, 129(3252), 312–312. http://doi.org/10.1038/129312a0
  • Christenson, J. H., Cronin, J. W., Fitch, V. L., & Turlay, R. (1964). Evidence for the 2 π Decay of the K 2 0 Meson. Physical Review Letters, 13(4), 138–140. http://doi.org/10.1103/PhysRevLett.13.138
  • Glashow, S. L., Iliopoulos, J., & Maiani, L. (1970). Weak Interactions with Lepton-Hadron Symmetry. Physical Review D, 2(7), 1285–1292. http://doi.org/10.1103/PhysRevD.2.1285

  • Cabibbo, N. (1963). Unitary Symmetry and Leptonic Decays. Physical Review Letters, 10(12), 531–533. http://doi.org/10.1103/PhysRevLett.10.531

  • Christenson, J. H., Cronin, J. W., Fitch, V. L., & Turlay, R. (1964). Studies of coherent regeneration of k0 1 mesons in various materials, and measurement of the k0 1 – k0 1 mass difference•. In Proceedings, 12th International Conference on High Energy Physics (ICHEP 1964) (Vol. 2, pp. 107–109). Retrieved from http://inspirehep.net/record/1377013

  • Yang, C. N. (1950). Selection Rules for the Dematerialization of a Particle into Two Photons. Physical Review, 77(2), 242. http://doi.org/10.1103/PhysRev.77.242

The Standard Model

  • Dore, U., Loverre, P. F., & Ludovici, L. (2016). Measurement of the Weinberg angle in neutrino interactions. The European Physical Journal H, 41(2), 137–155. http://doi.org/10.1140/epjh/e2016-70006-y

  • Banner, M., Battiston, R., Bloch, P., Bonaudi, F., Borer, K., Borghini, M., … Zeller, W. (1983). Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN p collider. Physics Letters B, 122(5–6), 476–485. http://doi.org/10.1016/0370-2693(83)91605-2

  • Arnison, G., Astbury, A., Aubert, B., Bacci, C., Bauer, G., Bézaguet, A., … Zurfluh, E. (1983). Experimental observation of isolated large transverse energy electrons with associated missing energy at. Physics Letters B, 122(1), 103–116. http://doi.org/10.1016/0370-2693(83)91177-2

  • The W and Z particles: a personal recollection – CERN Courier. (n.d.).

  • Rubbia, C., McIntyre, P., & Cline, D. (1977). Producing Massive Neutral Intermediate Vector Bosons with Existing Accelerators. In Proceedings of the International Neutrino Conference Aachen 1976 (pp. 683–687). Wiesbaden: Vieweg+Teubner Verlag. http://doi.org/10.1007/978-3-322-90614-4_67

  • Weinberg, S. (1972). Electromagnetic and Weak Masses. Physical Review Letters, 29(6), 388–392. http://doi.org/10.1103/PhysRevLett.29.388

  • Weinberg, S. (1972). Mixing Angle in Renormalizable Theories of Weak and Electromagnetic Interactions. Physical Review D, 5(8), 1962–1967. http://doi.org/10.1103/PhysRevD.5.1962

  • Salam, A. (1968). Weak and Electromagnetic Interactions. Conf.Proc., C680519, 367–377.

  • Weinberg, S. (1967). A Model of Leptons. Physical Review Letters, 19(21), 1264–1266. http://doi.org/10.1103/PhysRevLett.19.1264

  • Arnison, G., Astbury, A., Aubert, B., Bacci, C., Bauer, G., Bézaguet, A., … Zurfluh, E. (1983). Experimental observation of isolated large transverse energy electrons with associated missing energy at s=540 GeV. Physics Letters B, 122(1), 103–116. http://doi.org/10.1016/0370-2693(83)91177-2

Neutrinos

  • The T2K Experiment. (n.d.). Neutrinos in the Standard Model. Retrieved January 9, 2017, from http://t2k-experiment.org/neutrinos/in-the-standard-model/

  • King, S. F. (2008). Neutrino mass models: A road map. Journal of Physics: Conference Series, 136(2), 22038. http://doi.org/10.1088/1742-6596/136/2/022038

  • Murayama, H. (2002). The origin of neutrino mass, 35–39.

  • Gelmini, G. B. (2004). Prospect for relic neutrino searches. Hep-ph/0412305. Retrieved from http://arxiv.org/abs/hep-ph/0412305

The Higgs Boson

  • Schwinger, J. (1962). Gauge Invariance and Mass. Physical Review, 125(1), 397–398. http://doi.org/10.1103/PhysRev.125.397

  • Goldstone, J. (1961). Field theories with « Superconductor » solutions. Il Nuovo Cimento, 19(1), 154–164. http://doi.org/10.1007/BF02812722

  • Goldstone, J., Salam, A., & Weinberg, S. (1962). Broken Symmetries. Physical Review, 127(3), 965–970. http://doi.org/10.1103/PhysRev.127.965

  • Anderson, P. W. (1963). Plasmons, Gauge Invariance, and Mass. Physical Review, 130(1), 439–442. http://doi.org/10.1103/PhysRev.130.439

  • Englert, F., & Brout, R. (1964). Broken Symmetry and the Mass of Gauge Vector Mesons. Physical Review Letters, 13(9), 321–323. http://doi.org/10.1103/PhysRevLett.13.321

  • Higgs, P. W. (1966). Spontaneous Symmetry Breakdown without Massless Bosons. Physical Review, 145(4), 1156–1163. http://doi.org/10.1103/PhysRev.145.1156
  • Higgs, P. W. (1964). Broken symmetries, massless particles and gauge fields. Physics Letters, 12(2), 132–133. http://doi.org/10.1016/0031-9163(64)91136-9
  • Guralnik, G. S., Hagen, C. R., & Kibble, T. W. B. (1964). Global Conservation Laws and Massless Particles. Physical Review Letters, 13(20), 585–587. http://doi.org/10.1103/PhysRevLett.13.585

  • Branco, G. C., Ferreira, P. M., Lavoura, L., Rebelo, M. N., Sher, M., & Silva, J. P. (2011). Theory and phenomenology of two-Higgs-doublet models. http://doi.org/10.1016/j.physrep.2012.02.002

  • Alekhin, S., Djouadi, A., & Moch, S. (2012). The top quark and Higgs boson masses and the stability of the electroweak vacuum. Physics Letters B, 716(1), 214–219. http://doi.org/10.1016/j.physletb.2012.08.024

  • Elias-Miro, J., Espinosa, J. R., Giudice, G. F., Isidori, G., Riotto, A., & Strumia, A. (2011). Higgs mass implications on the stability of the electroweak vacuum. Physics Letters B, 709(3), 222–228. http://doi.org/10.1016/j.physletb.2012.02.013

  • Degrassi, G., Di Vita, S., Elias-Miró, J., Espinosa, J. R., Giudice, G. F., Isidori, G., & Strumia, A. (2012). Higgs mass and vacuum stability in the Standard Model at NNLO. Journal of High Energy Physics, 2012(8), 98. http://doi.org/10.1007/JHEP08(2012)098

  • Buttazzo, D., Degrassi, G., Giardino, P. P., Giudice, G. F., Sala, F., Salvio, A., & Strumia, A. (2013). Investigating the near-criticality of the Higgs boson. Journal of High Energy Physics, 2013(12), 89. http://doi.org/10.1007/JHEP12(2013)089

  • Huitu, K., Laitinen, J., Maalampi, J., & Romanenko, N. (2000). Singly charged higgses at linear collider. http://doi.org/10.1016/S0550-3213(00)00715-X

  • Brein, O., Hahn, T., Heinemeyer, S., & Weiglein, G. (2004). Single Charged MSSM Higgs-boson production at a Linear Collider. Retrieved from http://arxiv.org/abs/hep-ph/0402053

  • Cruz, J. L. D., Felix-Beltran, O., Hernandez-Sanchez, J., & Barradas-Guevara, E. (2003). Probing the charged Higgs quantum numbers through the decay H^+ -> W^+ h^0. Retrieved from http://arxiv.org/abs/hep-ph/0309097

Extra Dimensions

  • Khachatryan, V., Erbacher, R., Carrillo Montoya, C. A., Carvalho, W., Górski, M., Kotlinski, D., … Sung, K. (2016). Search for Resonant Production of High-Mass Photon Pairs in Proton-Proton Collisions at $\sqrt s$ =8 and 13 TeV. Phys.Rev.Lett., 117, 51802. http://doi.org/10.1103/PHYSREVLETT.117.051802

  • Search for new physics in high mass diphoton events in $3.3~\mathrm{fb}^{-1}$ of proton-proton collisions at $\sqrt{s}=13~\mathrm{TeV}$ and combined interpretation of searches at $8~\mathrm{TeV}$ and $13~\mathrm{TeV}$. (2016).

  • Search for Large Extra Spatial Dimensions in Dielectron Production with the CMS Detector. (2013).

  • Search for Dark Matter and Large Extra Dimensions in the gamma + MET final state in pp Collisions at sqrt(s) = 13 TeV. (2016).

  • Search for resonances in diphoton events with the ATLAS detector at $\sqrt{s}$ = 13 TeV. (2016).

  • String Theory’s Extra Dimensions Must Be Less Than Half the Width of a Human Hair – Scientific American. (n.d.). Retrieved January 16, 2017, from https://www.scientificamerican.com/article/string-theorys-extra-dime/

  • Ëot-wash experiment – CERN Courier. (n.d.).

  • Randall, L., & Sundrum, R. (1999). An Alternative to Compactification. Physical Review Letters, 83(23), 4690–4693. http://doi.org/10.1103/PhysRevLett.83.4690

  • Randall, L., & Sundrum, R. (1999). Large Mass Hierarchy from a Small Extra Dimension. Physical Review Letters, 83(17), 3370–3373. http://doi.org/10.1103/PhysRevLett.83.3370

  • Rizzo, T. G. (2004). Pedagogical Introduction to Extra Dimensions. Retrieved from http://arxiv.org/abs/hep-ph/0409309

  • Randall, L., & Sundrum, R. (1999). A Large Mass Hierarchy from a Small Extra Dimension. http://doi.org/10.1103/PhysRevLett.83.3370

  • Agashe, K., Davoudiasl, H., Perez, G., & Soni, A. (2007). Warped Gravitons at the LHC and Beyond. http://doi.org/10.1103/PhysRevD.76.036006

  • Appelquist, T., Cheng, H.-C., & Dobrescu, B. A. (2000). Bounds on Universal Extra Dimensions. Hep-ph/0012100. Retrieved from http://arxiv.org/abs/hep-ph/0012100

Supersymmetry

  • Wess, J., & Zumino, B. (1974). Supergauge transformations in four dimensions. Nuclear Physics B, 70(1), 39–50. http://doi.org/10.1016/0550-3213(74)90355-1

  • Volkov, D. V. (1994). Supergravity before 1976. Retrieved from http://arxiv.org/abs/hep-th/9410024

  • Akulov, V. P., & Volkov, D. V. (1972). U(4)-symmetry of leptons and quarks. Yad.Fiz., 15, 827–832.

  • Golfand, Y. A., & Likhtman, E. P. (1971). Extension of the Algebra of Poincare Group Generators and Violation of p Invariance. JETP Lett., 13, 323–326.

  • Gervais, J.-L., & Sakita, B. (1971). Field theory interpretation of supergauges in dual models. Nuclear Physics B, 34(2), 632–639. http://doi.org/10.1016/0550-3213(71)90351-8

  • Martin, S. P. (1997). A Supersymmetry Primer. Hep-ph/9709356. Retrieved from http://arxiv.org/abs/hep-ph/9709356

Superstring Theory (including 4-D concepts)

  • Bachas, C. (1986). A STRING PRIMER. Lectures given at.

  • Dine, M. (1986). A SUPERSTRING PRIMER. Invited Lectures given at.

  • Gates, S. J. (1998). Basic Canon in D=4, N=1 Superfield Theory: Five Primer Lectures. Retrieved from http://arxiv.org/abs/hep-th/9809064

  • Alvarez, E., & Meessen, P. (1998). String Primer. http://doi.org/10.1088/1126-6708/1999/02/015

  • Veneziano, G. (1968). Construction of a crossing-simmetric, Regge-behaved amplitude for linearly rising trajectories. Il Nuovo Cimento A, 57(1), 190–197. http://doi.org/10.1007/BF02824451

  • Gates, S. J. (2006). Is string theory phenomenologically viable? Physics Today, 59(6), 54–56. http://doi.org/10.1063/1.2218556

  • Chaudhuri, S., Kawai, H., & Tye, S.-H. H. (1989). Chiral bosonic supercurrents and four-dimensional fermionic string models. Nuclear Physics B, 322(2), 373–401. http://doi.org/10.1016/0550-3213(89)90420-3

  • Kawai, H., Lewellen, D. C., & Henry Tye, S.-H. (1987). Construction of fermionic string models in four dimensions. Nuclear Physics B, 288, 1–76. http://doi.org/10.1016/0550-3213(87)90208-2

  • KAWAI, H., LEWELLEN, D. C., & HENRY TYE, S.-H. (1988). CONSTRUCTION OF FOUR DIMENSIONAL FERMIONIC STRING MODELS WITH A GENERALIZED SUPERCURRENT. International Journal of Modern Physics A, 3(1), 279–284. http://doi.org/10.1142/S0217751X88000102

  • Kawai, H., Tye, S. H. H., & Lewellen, D. C. (1987). CONSTRUCTION OF FOUR-DIMENSIONAL FERMIONIC STRINGS: A BRIEF REVIEW. Conf.Proc., C870311, 169–177. Retrieved from http://inspirehep.net/record/248820

  • Gates, S. J., Brooks, R., & Muhammad, F. (1987). Unidexterous superspace: The flax of (super)strings. Physics Letters B, 194(1), 35–42. http://doi.org/10.1016/0370-2693(87)90765-9

  • Gates, S. J. J. (1987). MORE FOUR-DIMENSIONAL (SUPER)STRING THEORIES? Invited Contribution given at. Retrieved from http://inspirehep.net/record/250105

  • Gates, S. J., Majumdar, P., Oerter, R. N., & van de Ven, A. E. (1988). Superspace geometry from D = 4, N = 1 heterotic superstrings. Physics Letters B, 214(1), 26–34. http://doi.org/10.1016/0370-2693(88)90446-7

  • Gates, S. J., & Siegel, W. (1988). Leftons, rightons, nonlinear σ-models, and superstrings. Physics Letters B, 206(4), 631–638. http://doi.org/10.1016/0370-2693(88)90709-5

  • Depireux, D. A., Gates, S. J., & Park, Q.-H. (1989). Lefton-righton formulation of massless Thirring models. Physics Letters B, 224(4), 364–372. http://doi.org/10.1016/0370-2693(89)91462-7

  • Gates, S. J., Howe, P. S., & Hull, C. M. (1989). Quantum supersymmetry and the supergeometry of four-dimensional superstrings. Physics Letters B, 227(1), 49–54. http://doi.org/10.1016/0370-2693(89)91282-3

  • Depireux, D. A., James Gates, S., & Radak, B. (1990). Yes, leftons for heterotic superstrings! Physics Letters B, 236(4), 411–416. http://doi.org/10.1016/0370-2693(90)90375-G

  • Bellucci, S., Depireux, D. A., & James Gates, S. (1989). (1, 0) Thirring models and the coupling of spin-0 fields to the heterotic string. Physics Letters B, 232(1), 67–74. http://doi.org/10.1016/0370-2693(89)90560-1

  • Gates, S. J., & Nishino, H. (1991). Does D=4, N=8 supergravity really know about heterotic strings? Classical and Quantum Gravity, 8(5), 809–818. http://doi.org/10.1088/0264-9381/8/5/006

  • Gates, S. J. (1989). Strings, superstrings and two-dimensional Lagrangian field theory. Retrieved from http://inspirehep.net/record/289488

  • Gates, S. J. (1989). Progress toward covariant formulation of all D = 4 GS type sigma model actions. Retrieved from http://inspirehep.net/record/290173?ln=en

  • Gates, S. J. (1989). Toward a complete theory of massless effective actions for D = 4, N=1 superstrings. Conf.Proc., C8903131, 21–34. Retrieved from http://inspirehep.net/record/290802

Dark Matter

  • Billard, J., Strigari, L., & Figueroa-Feliciano, E. (2013). Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments. http://doi.org/10.1103/PhysRevD.89.023524

  • O’Hare, C. A. J., Green, A. M., Billard, J., Figueroa-Feliciano, E., & Strigari, L. E. (2015). Readout strategies for directional dark matter detection beyond the neutrino background. http://doi.org/10.1103/PhysRevD.92.063518

  • Escudero, M., Berlin, A., Hooper, D., & Lin, M.-X. (2016). Toward (Finally!) Ruling Out Z and Higgs Mediated Dark Matter Models. Journal of Cosmology and Astroparticle Physics, 2016(12), 029–029. http://doi.org/10.1088/1475-7516/2016/12/029

  • Bertone, G., Hooper, D., & Silk, J. (2004). Particle Dark Matter: Evidence, Candidates and Constraints. Hep-ph/0404175. Retrieved from http://arxiv.org/abs/hep-ph/0404175

  • Feng, J. L. (2009). Dark Matter Phenomenology. 0908.1388. Retrieved from http://arxiv.org/abs/0908.1388

  • Cotta, R. C., Gainer, J. S., Hewett, J. L., & Rizzo, T. G. (2009). Dark Matter in the MSSM. 0903.4409. Retrieved from http://arxiv.org/abs/0903.4409

  • Bélanger, G. (2009). Dark matter and the LHC. 0907.0770. Retrieved from http://arxiv.org/abs/0907.0770

Accelerated Expansion of the Universe, Dark Energy, Cosmic Evolution, and Related

  • Conley, A., Guy, J., Sullivan, M., Regnault, N., Astier, P., Balland, C., … Walker, E. S. (2011). SUPERNOVA CONSTRAINTS AND SYSTEMATIC UNCERTAINTIES FROM THE FIRST THREE YEARS OF THE SUPERNOVA LEGACY SURVEY. The Astrophysical Journal Supplement Series, 192(1), 1. http://doi.org/10.1088/0067-0049/192/1/1

  • Conley, A., Guy, J., Sullivan, M., Regnault, N., Astier, P., Balland, C., … Walker, E. S. (2011). SUPERNOVA CONSTRAINTS AND SYSTEMATIC UNCERTAINTIES FROM THE FIRST THREE YEARS OF THE SUPERNOVA LEGACY SURVEY. The Astrophysical Journal Supplement Series, 192(1), 1. http://doi.org/10.1088/0067-0049/192/1/1

  • Conley, A., Guy, J., Sullivan, M., Regnault, N., Astier, P., Balland, C., … Walker, E. S. (2011). SUPERNOVA CONSTRAINTS AND SYSTEMATIC UNCERTAINTIES FROM THE FIRST THREE YEARS OF THE SUPERNOVA LEGACY SURVEY. The Astrophysical Journal Supplement Series, 192(1), 1. http://doi.org/10.1088/0067-0049/192/1/1

  • Conley, A., Guy, J., Sullivan, M., Regnault, N., Astier, P., Balland, C., … Walker, E. S. (2011). SUPERNOVA CONSTRAINTS AND SYSTEMATIC UNCERTAINTIES FROM THE FIRST THREE YEARS OF THE SUPERNOVA LEGACY SURVEY. The Astrophysical Journal Supplement Series, 192(1), 1. http://doi.org/10.1088/0067-0049/192/1/1

  • Planck reveals first stars were born late / Planck / Space Science / Our Activities / ESA. (n.d.). Retrieved November 30, 2017, from http://www.esa.int/Our_Activities/Space_Science/Planck/Planck_reveals_first_stars_were_born_late

  • Adam, R., Ade, P. A. R., Aghanim, N., Akrami, Y., Alves, M. I. R., Argüeso, F., … Zonca, A. (2016). Planck 2015 results. Astronomy & Astrophysics, 594, A1. http://doi.org/10.1051/0004-6361/201527101

  • Hinshaw, G., Larson, D., Komatsu, E., Spergel, D. N., Bennett, C. L., Dunkley, J., … Wright, E. L. (2012). Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. http://doi.org/10.1088/0067-0049/208/2/19

  • Bennett, C. L., Larson, D., Weiland, J. L., Jarosik, N., Hinshaw, G., Odegard, N., … Wright, E. L. (2012). Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. http://doi.org/10.1088/0067-0049/208/2/20

Gravitational Wave Astronomy, General Relativity, and Related

  • Einstein, A. (1905). Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?” (”Does the Inertia of a Body Depend Upon Its Energy Content?“). Annalen Der Physik.

  • Einstein, A. (1916). “Die Grundlage der allgemeinen Relativitätstheorie” (”The Foundation of the General Theory of Relativity“). Annalen Der Physik, 49.

  • Collaboration, L. S. (2017). O2 : A new season ! LIGO Magazine, 10(November 2016).

  • LIGO Open Science Center. (n.d.). Data release for event GW151226. Retrieved January 10, 2017, from https://losc.ligo.org/events/GW151226/

  • Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., … Zweizig, J. (2016). Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116(6), 61102. http://doi.org/10.1103/PhysRevLett.116.061102

  • Mignani, R. P., Testa, V., Caniulef, D. G., Taverna, R., Turolla, R., Zane, S., & Wu, K. (2016). Evidence for vacuum birefringence from the first optical polarimetry measurement of the isolated neutron star RX\, J1856.5$-$3754. http://doi.org/10.1093/mnras/stw2798

  • Aleksandrov, E. B., Aleksandrov, P. A., Zapasskii, V. S., Korchuganov, V. N., & Stirin, A. I. (2011). Direct experimental demonstration of the second special relativity postulate: the speed of light is independent of the speed of the source. Physics-Uspekhi, 54(12), 1272–1278. http://doi.org/10.3367/UFNe.0181.201112l.1345

  • Aleksandrov, E. B., Aleksandrov, P. A., Zapasskii, V. S., Korchuganov, V. N., & Stirin, A. I. (2011). Measuring speed of the light emitted by an ultrarelativistic source. JETP Letters, 94(5), 344–346. http://doi.org/10.1134/S0021364011170024

  • Goldstein, D. B. (2010). IS-GPS-800A GLOBAL POSITIONING SYSTEM WING ( GPSW ) SYSTEMS ENGINEERING & INTEGRATION INTERFACE SPECIFICATION IS-GPS-800 Revision A Navstar GPS Space Segment / User Segment L1C Interface, (June).

  • Senior, K. L., Ray, J. R., & Beard, R. L. (2008). Characterization of periodic variations in the GPS satellite clocks. GPS Solutions, 12(3), 211–225. http://doi.org/10.1007/s10291-008-0089-9

  • Izzo, L., Muccino, M., Zaninoni, E., Amati, L., & Della Valle, M. (2015). New measurements of $\Omega_m$ from gamma-ray bursts. http://doi.org/10.1051/0004-6361/201526461

  • Guth, A. H. (1981). Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D, 23(2), 347–356. http://doi.org/10.1103/PhysRevD.23.347

Black Holes

  • Hawking, S. W. (1975). Particle creation by black holes. Communications In Mathematical Physics, 43(3), 199–220. http://doi.org/10.1007/BF02345020

  • HAWKING, S. W. (1974). Black hole explosions? Nature, 248(5443), 30–31. http://doi.org/10.1038/248030a0

  • BOLTON, C. T. (1972). Identification of Cygnus X-1 with HDE 226868. Nature, 235(5336), 271–273. http://doi.org/10.1038/235271b0

Leave a Reply

Your email address will not be published. Required fields are marked *

Spam Blocking by WP-SpamShield